
Article citation info:  

Komorska I, Wołczyński Z, Borczuch A. Diagnosis of sensor faults in a combustion engine control system with the artificial neural network. 

Diagnostyka. 2019;20(4):19-25. https://doi.org/10.29354/diag/110440  

 

19 

 

  

DIAGNOSTYKA, 2019, Vol. 20, No. 4 

ISSN 1641-6414 
e-ISSN 2449-5220 

DOI: 10.29354/diag/110440 

  

 

DIAGNOSIS OF SENSOR FAULTS IN A COMBUSTION ENGINE CONTROL 

SYSTEM WITH THE ARTIFICIAL NEURAL NETWORK 
  

Iwona KOMORSKA 
1
, Zbigniew WOŁCZYŃSKI 

2
, Artur BORCZUCH 

3 

University of Technology and Humanities in Radom, Faculty of Mechanical Engineering, 

Department of Automotive Mechatronics 
1 iwona.komorska@uthrad.pl, 2 z.wolczynski@uthrad.pl, 3 a.borczuch@uthrad.pl  

  

Abstract 

The work presents the investigations carried out on a spark-ignition internal combustion engine with 

gasoline direct injection. The tests were carried out under conditions of simulated damage to the air 

temperature sensor, engine coolant temperature sensor, fuel pressure sensor, air pressure sensor, intake 

manifold leakage, and air flow disturbances. The on-board diagnostic system did not detect any damage 

because the sensor indications were within acceptable limits. The engine control system in each case changed 

its settings according to the adaptive algorithm. Signal values in cycles from all available sensors in the 

engine control system and data available in the on-board diagnostic system of the car were recorded. A large 

amount of measurement data was obtained. They were used to create a statistical function that classifies 

sensor faults using an artificial neural network. A set of training data has been prepared accordingly. During 

learning the neural network, a hit rate of over 99% was achieved. 
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DIAGNOZOWANIE USZKODZEŃ CZUJNIKÓW W SYSTEMIE STEROWANIA SILNIKA 

SPALINOWEGO Z WYKORZYSTANIEM SZTUCZNEJ SIECI NEURONOWEJ 
  

Streszczenie  

W pracy przedstawiono badania przeprowadzone na silniku spalinowym o zapłonie iskrowym z 

bezpośrednim wtryskiem paliwa. Testy wykonano w warunkach symulowanych uszkodzeń czujników 

temperatury powietrza, temperatury cieczy chłodzącej silnik, ciśnienia paliwa, ciśnienia powietrza, 

nieszczelności w kolektorze dolotowym, zaburzenia przepływu powietrza. System diagnostyki pokładowej 

nie wykrył żadnego uszkodzenia, ponieważ wskazania czujników mieściły się w granicach tolerancji. System 

sterowania silnika w każdym przypadku zmieniał swoje ustawienia według adaptacyjnego algorytmu. 

Rejestrowano cyklowe wartości sygnałów ze wszystkich dostępnych czujników w systemie sterowania 

silnika oraz dane dostępne w systemie diagnostyki pokładowej samochodu. Otrzymano dużą ilość danych 

pomiarowych. Wykorzystano je do utworzenia statystycznej funkcji klasyfikującej uszkodzenia przy pomocy 

sztucznej sieci neuronowej. Odpowiednio przygotowano zbiór danych uczących. W trakcie uczenia sieci 

neuronowej osiągnięto współczynnik trafień powyżej 99%. 

   

Słowa kluczowe: silnik spalinowy, diagnozowanie uszkodzeń czujników, sztuczna sieć neuronowa 

  
1. INTRODUCTION 

 

The control system of the gasoline engine 

requires information about its current condition. 

Several types of sensors are used in the gasoline 

engine control system. An extensive description of 

their construction and operation can be found in [1-

3]. Wrong indications or lack of strategic sensors 

(e.g. of crankshaft position) preclude the work of 

the engine. Signals from the remaining sensors (e.g. 

air flowmeter) burdened with an error cause an 

inappropriate working of the control system and 

non-optimal work of the engine.  

The role of the on-board diagnostics is a 

supervision over all elements of the control system 

including sensors. The system reacts to damages 

causing an increase in the emission of toxic exhaust 

components or a significant increase in fuel 

consumption [4]. Therefore, some of the defects, 

such as a change in sensor characteristics, remain 

unnoticed. In such cases, the adaptive control 

system adapts other control parameters (e.g. start of 

injection, spark advance, duration of fuel injection) 

so as to compensate for the changes [5-8]. 

Damages of the sensors can take place because 

of many reasons. There are mechanic damages easy 

to visual identification. Electric damages of the 

sensors undetectable visually are very frequent. 

Such damages can result in the signal giving wrong 

information or the lack of the signal. If as a result of 

the wrong working of the sensor its output signal 

goes beyond the bounds accepted for the particular 
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sensor, the system of the on-board diagnostics 

interprets it as an error of the sensor. If wrong 

working of the sensor is based on the shifting its 

characteristics but the output signal does not go 

beyond the bounds accepted for it, such damage 

remains unnoticed. 

The self-diagnosis system is an algorithm 

realized in the controller which is supposed to 

detect faults. It analyses signals coming from the 

sensors. It may be possible that the wrong value of 

the signal is not the result of damaging the sensor 

but the wire linking the sensor with the controller. 

Damage to the wires can be based on shorting, 

interruption and appearing a certain resistance 

between the wires or between the wire and car 

body. The system of on-board diagnostics can 

detect the first two damages from those ones 

mentioned above and will indicate the fault. In the 

case of appearing a certain (finished) resistance 

between the wires, the signal from the sensor can be 

moved by a constant value (Fig.1). In such a 

situation, the damage will not be detected and the 

engine will be controlled on the basis of false 

information. 

The controller will work in the same way when 

as a result of a faulted sensor its signal is changed 

by a certain value. The shifting of the signal by a 

constant value usually occurs in the entire extent of 

the output signal. The damages of the sensors can 

also be based on the change of its characteristics. 

Most frequently in the case of linear characteristics, 

this is a change of its slope and/or shifting by a 

constant value (Fig. 1a). 
 

 

 

Fig. 1. Characteristics of sensors a) linear, b) 

non-linear and its exemplary changes for 

damaged sensor 

  

Linear characteristics are provided by 

potentiometric sensors: accelerator pedal position, 

throttle position, atmospheric pressure, fuel 

pressure, air pressure in the intake channel, as well 

as volumetric air flow meter used in the tested 

vehicle. 

In the case of sensors of non-linear 

characteristics, shifting by a constant value of the 

output signal strongly disturbs the survey only for 

low or high measured values (Fig. 1b). Non-linear 

characteristics are provided by hot-film air 

flowmeters, air and coolant temperature sensors. 

Aging sensors work in a similar way. Their 

characteristics submit little changes with time. This 

is a process that concerns most of the sensors 

during the maintenance of the car. Controllers are 

equipped with the adaptive control system to 

minimize errors of controlling the engine as a 

consequence of the aging sensors. The adaptive 

system „learns” during the maintenance of the car 

and corrects controlling of the engine taking 

account of the indication changes of the aging 

sensors. 

In such a case, controlling the engine will be 

corrected on the basis of changed characteristics of 

the sensor that will not give optimal results of its 

working. Deterioration of the engine performance 

can be based on the increase of the emission of 

toxic compounds, the loss of power and torque or 

the increase of fuel consumption.  

Fig. 2 shows the graph of engine torque and 

power versus the rotational speed for an efficient 

engine and fault-free sensor indications. Next, the 

error of the air flowmeter indication in the manifold 

was simulated by the flow disorder. During the 

subsequent test, the adaptive control system adjusts 

its settings, but for many speed values, it achieves 

lower power and torque values, especially in the 

high-speed range. 

 

 

Fig. 2. Torque and Power vs. rpm of engine 

for a fault-free state and simulated fault of 

flowmeter 

 

The on-board diagnostic system is oriented 

towards the detection of faults which cause an 

increase of the exhaust gas emission. In the case of 

mechanical faults in the air intake system or 

changes of the sensor characteristics, the control 

system tries to mask faults adjusting - as far as 

possible - the engine control [9].  

The modern on-board diagnostics system often 

uses virtual sensors in the combustion engine. 

Based on the indications of other sensors 
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recognized as efficient and relations of 

mathematical or statistical models, the rational 

indications investigated sensors are estimated and 

compared with the indication of the physical 

sensors [10-15]. 

Because of the product variety and structural 

complexity of automobiles, the traditional diagnosis 

technologies were difficult to meet the requirements 

of fault detection and maintenance. In order to 

improve the diagnosis and maintenance level of 

faults, the application of neural network method of 

sensor fault diagnosis was studied. 

 

2. DESCRIPTION OF EXPERIMENTS 

 

The investigation was conducted on the four-

cylinder spark ignition engine of a gasoline direct 

injection (GDI) of passenger car Mitsubishi 

Carisma (Fig. 3). The car was positioned on a 

chassis dynamometer. It was possible to brake a 

vehicle or the engine with the given moment, or 

accelerated to the given speed. In such a way the 

vehicle engine was loaded to the required and 

simultaneously constant speed n at various throttle 

position TPS. 

 

 

Fig. 3. Experimental setup 

 

Some investigations were planned in order to 

verify the method of sensors fault detection in the 

control system of the SI engine with the gasoline 

direct injection (GDI). It differs from the fuelling 

system of the SI engine with the indirect injection 

of fuel. The basic difference is the work of the 

engine with very poor mixtures. It takes place at 

low and medium rotational speeds and loads. Then, 

the laminar mixture is burned in the engine. The 

average composition of such a mixture determined 

by air-fuel ratio λ varies from 1.8 to 2.5. Surveys 

were conducted in a situation when the engine was 

working with the homogenous mixture. 

The sensors submitted to examination include 

volumetric air flowmeter, the air pressure sensor, 

the air temperature sensor, the manifold pressure 

sensor, the engine temperature sensor, and the fuel 

pressure sensor. The survey of the work parameters 

of the engine with the entire functional control 

system was carried out. Next, faults of particular 

sensors were simulated and the survey was 

conducted one more time. 

Taking into consideration the fact that the 

indication errors can be displayed at different 

rotational speeds of the engine as well as at 

different loads, the studies were carried out at three 

loads and seven rotational speeds. The loads were 

given by setting the voltage at the output of the 

accelerator pedal position sensor. Some voltages 

were in a line with no-load running, 17%, 34% and 

100% of the extent of its variability. The rotational 

speed was set by applying the brake load to the 

engine. The surveys were conducted with the 

speeds of no-load running, 1000, 1500, 2500, 3000, 

3500 and 4000 rpm. 

The following indication errors of the sensor 

were simulated:  

 shifting the characteristics of the air temperature 

sensor by adding additional resistance so that 

instead of the temperature of 31ºC it indicated 

44ºC, 

 shifting the characteristics of the air temperature 

sensor by adding additional resistance so that 

instead of the temperature of 33ºC instead of 

19ºC,  

 shifting the characteristics of the liquid coolant 

temperature sensor by adding additional  

 resistance in a way that it pointed 106ºC instead 

of 86ºC,  

 shifting the characteristics of the liquid coolant 

temperature sensor by adding additional  

 resistance in a way that it pointed 58ºC instead 

of 87ºC, 

 shifting the characteristics of the air pressure 

sensor by shifting the output voltage in a way 

that it pointed 109kPa instead of 98kPa,  

 shifting the characteristics of the air pressure 

sensor by shifting the output voltage in a way 

that it pointed 87kPa instead of 98kPa,  

 change of the characteristics of the volumetric 

air flowmeter by partial obscuring the 

measuring channel,  

 shifting the characteristics of the fuel pressure 

sensor by decreasing the output voltage in a way 

that it pointed pressure 2MPa higher than the 

actual one,  

 shifting the characteristics of the fuel pressure 

sensor by increasing the output voltage in a way 

that it pointed pressure 2MPa lower than the 

actual one,  

 changing manifold pressure by making little air 

leakage,  

 changing manifold pressure by making bigger 

air leakage. 

The on-board diagnostics (OBD) system has not 

detected any of the simulated faults during the 

studies. 

The following one-second window of signals 

was registered for the efficient control system and 

all faults of the sensors mentioned above:  

 from the crankshaft position sensor,  
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 from the camshaft position sensor,  

 controlling the fuel injector for the first 

cylinder,  

 controlling the ignition coil of the first cylinder,  

 from the volumetric flowmeter,  

 from the manifold pressure (MAP) sensor,  

 from the analyzer of mixture composition 

MEXA-700λ,  

 from the fuel pressure sensor. 

Next, the following parameters in the control 

system of the engine for each working cycle were 

determined:  

 value of rotational speed n, 

 value of the spark advance angle kwz,  

 value of volumetric air flow rate filling the 

engine VA,  

 values of the injector opening angle kw 

 duration of the fuel injection tw,  

 value of the manifold absolute pressure MAP,  

 the air-fuel ratio determined by the factor λ,  

 fuel pressure in the board powering the injectors 

pF. 

 

4. ANALYSIS OF TEST RESULTS 

 

The adaptive engine control system attempts to 

match the control parameters, such as the duration 

and start of fuel injection, the spark advance angle, 

so as to get as close as possible to the air-fuel ratio 

, given by the algorithm. Fig. 4. presents the 

results of  measured for various types of sensor 

damage.  
a) 

 
b) 

 
Fig. 4. Air fuel ratio vs. rpm for fault-free and 

different sensor faults 

a) 17% throttle valve opening 

b) 100% throttle valve opening 

 For small engine loads (Fig. 4a) in the case of 

most incorrect sensor indications, the control 

system selects the duration of fuel injection so that 

the set level  (blue points) is achieved. For leakage 

in the intake manifold, the air-fuel ratio increases 

up to 2. The increase in  can also be seen for the 

faulty (+) indication of the air pressure sensor and 

the fuel pressure sensor (-). The biggest changes 

can be noted for a speed of 1000 rpm. 

In the case of the highest engine loads (Fig. 4b), 

a similar level of coefficient  to the original one 

can be achieved only for faulty indications of the 

air temperature and coolant temperature sensor. 

Fig. 5 and 6 summarize the control parameters 

matched by the adaptive control system in the cases 

of various sensor failures. Blue points are a pattern 

for a state without damage. Fig. 5 refers to low 

engine loads (17% throttle opening), while Fig. 6 

shows the control parameters for full throttle 

opening. 
a) 

 
b) 

 
c) 

 
Fig. 5. Engine control parameters for 17% 

throttle valve opening and different sensor 

faults 

a) spark advance vs. rpm 

b) fuel injection duration vs. rpm 

c) start of injection angle vs. rpm 

 

600 800 1000 1200 1400 1600 1800 2000 2200
0

0.5

1

1.5

2

n [rpm]






 

 

2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
0.6

0.7

0.8

0.9

1

1.1

1.2

n [rpm]






 

 

600 800 1000 1200 1400 1600 1800 2000 2200
5

10

15

20

25

30

35

n [rpm]

k w
z [ 

o  ]

 

 

600 800 1000 1200 1400 1600 1800 2000 2200
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

n [rpm]

t w
 [m

s]

 

 

600 800 1000 1200 1400 1600 1800 2000 2200
22

24

26

28

30

32

34

36

38

40

n [rpm]

k w
 [ 

o  ]

 

 



DIAGNOSTYKA, Vol. 20, No. 4 (2019)  

Komorska I, Wołczyński Z, Borczuch A.: Diagnosis of sensor faults in a combustion engine control system … 

 

 

23 

The set of sensor indications and control 

parameters are so unique for each sensor damage 

that an error can be deduced from them. The 

presented data are for one type of engine. In control 

systems of other manufacturers, other power, etc., 

the control system will adjust the parameters 

according to a different algorithm, so it is difficult 

to set rigid rules during the diagnosis.  
a) 

 
b) 

 
c) 

 
Fig. 6. Engine control parameters for 100% 

throttle valve opening and different sensor 

faults 

a) spark advance vs. rpm 

b) fuel injection duration vs. rpm 

c) start of injection angle vs. rpm 

 

Machine learning methods allow you to analyze 

a large amount of data. This work uses artificial 

neural networks in the task of identifying and 

classifying the sensor faults. 

 
5. FAULT CLASSIFICATION WITH 

ARTIFICIAL NEURAL NETWORKS 

 

Artificial Neural Networks (ANN) can work 

easily with non-linearly separable data, and this 

makes them ideal for applications such as fault 

detection and classification, where the training data 

are sparse, and the network will have to generalize 

well. Several applications have demonstrated that a 

neural network can successfully recognize and 

classify different faults in a number of different 

condition monitoring applications [16-22]. A good 

general introduction to neural networks is provided 

by [23,24]. 

The Matlab ANN Toolbox was used for the 

modeling. Feedforward backpropagation is the 

network structure with a Levenberg-Marquardt 

backpropagation training function and a 

backpropagation weight and bias learning function. 

A two-layer feed-forward network was used as it 

can approximate any function with a finite number 

of discontinuities given sufficient neurons in the 

hidden layer.  

Based on the analysis of the measurement 

results, it was determined that two areas of engine 

operation should be selected for the diagnosis: 

a. low load and speed about 1000 rpm and 

b. full load and speed of about 4,000 rpm. 

There are 9 parameters for the network input: 

 engine rotational speed n, 

 throttle position TPS, 

 spark advance angle kwz, 

 volumetric air flow rate filling the engine VA, 

 start of injection angle kw , 

 duration of the fuel injection tw, 

 manifold absolute pressure MAP, 

 air-fuel ratio λ, 

 fuel pressure pF. 

At the output, twelve classes of states were 

defined, corresponding to the tested sensor faults 

and described in chapter 3. Samples obtained at the 

experimental stage were randomly divided into 

three groups to train (70% of the samples = 325 

samples), validate (15% of the samples = 69 

samples) and test (15% of the samples = 69 

samples)) the neural networks with a random data  

division function. Training samples were 

introduced during the training and the network was 

adjusted according to the error. Validation samples 

were used to measure network generalization and 

stop the training when the generalization stopped 

improving. Testing samples have no effect on 

training and so provide an independent measure of 

a network’s performance. The Levenberg-

Marquardt backpropagation algorithm 

automatically stops training when generalization 

ceases to improve, as an increase in the mean 

square error of the validation samples indicates. 

The network contains an output layer with 12 

neurons because there are 12 data classes and one 

hidden layer. Tests were conducted to determine the 

best number of neurons in the hidden layer. The 

values from 8 to 16 neurons were considered. 

Various activation functions were tested. Two 

criteria were assessed: 

 percent error (%E) - the fraction of samples 

which are misclassified and 

 minimizing cross-entropy (CE) results in good 

classification. 
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The best results were obtained for 14 neurons in the 

hidden layer for the 'tansig' activation function 

(sigmoid tangent) described by 

 𝑎 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝑛) =
2

1+𝑒−2𝑛 − 1  (1) 

where n is the sum of the weighted outputs.  

 

In the output layer, the 'softmax' activation 

function has been used, which is an exponential 

function with a normalized value in such a way that 

the sum of the activation for the entire layer is equal 

to 1, described by 

 𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑛) =
𝑒𝑛

∑ 𝑒𝑛𝑖𝑖
 .  (2) 

 

The structure of the network is shown in Fig. 7. 

 

 

Fig. 7. Two-layer tansig/softmax network 

developed with Matlab 

 

There was one error while training the network - 

one data sample for 'air temperature sensor+' was 

qualified as 'flowmeter sensor error'. There was also 

one error during validation - one data sample for 

'air pressure sensor+' was qualified as 'flowmeter 

sensor error'. Testing went without errors. The 

whole matrix of errors is presented in Fig.8. 

Numbers on the diagonal of the matrix indicate the 

number of correctly classified samples. The overall 

hit score was 99.6%. 

 
Fig. 8. Summary Confusion matrix for 

training, validation and test 

  
6. CONCLUSIONS 

 
The investigation confirmed that the control 

system of the automotive engine is highly robust in 

that individual sensor failures are occurred and the 

control system is dynamically reconfigured for 

uninterrupted operation. Eleven faulty sensor 

indications were examined. Since in no case the 

sensor's indication exceeded the set limits, the on-

board diagnostic system did not notice an error. In 

each case, the adaptive control system adjusted its 

control parameters so that the engine would work as 

well as possible (ecologically). 

In some cases, adaptation is not beneficial. The 

engine under test works on poor mixtures and it is 

sometimes difficult to detect the cause of its work 

that deviates from the norm (eg with reduced 

power). Therefore, a system for diagnosing sensor 

faults based on a neural network with one hidden 

layer has been developed. The tests were 

satisfactory because more than 99% of hits were 

obtained. The good obtained result relates to a 

single sensor failure during one test. When building 

applications, multiple failures in many tests should 

be tested. 

The use of artificial intelligence methods allows 

for the automation of the diagnostic procedure. 

With a large amount of measurement data, fault 

classifications can be made without developing 

rules, especially since each control system has its 

own adaptive algorithm. 

The article presents only one of the methods of 

machine learning. Other methods of machine 

learning methods as decision trees or support vector 

machine can be successfully used. 
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